Department of Energy & Climate Change

UK Renewable Energy Policy

Office for Renewable Energy Deployment, Department of Energy and Climate Change

Why do we need renewable energy?

Ambitious, legally binding targets:

- •The Climate Change Act set a target to reduce emissions by at least **80% by 2050** relative to 1990 levels and by at least **34% by 2020**
- •The EU Renewable Energy Directive requires the UK to meet 15% of energy demand from renewable sources by 2020 (from 3.8% in 2011)

Key renewable technologies

The EU defines 'renewables' widely, as "energy from renewable non-fossil sources. We can use any of these to meet a target of 15% of energy use in 2020, equal to 220 – 230 TWh of generation. But the following eight technologies will be most important.

1. Offshore Wind	2. Biomass Heat	3. Biomass Electricity	4. Onshore Wind
In 2020: 33–58 TWh/yr	In 2020: 36–50 TWh/yr	In 2020: 32–50TWh/yr	In 2020: 24–32 TWh/yr
Very large deployment potential - but deeper / further out sites are expensive. Working to reduce cost by 2020	Heat from wood, waste, sewage etc. mainly for industrial and commercial use.	Contributes around 40% of total renewable electricity	Can be widely deployed, but issues with their placement and public desirability
5. Heat Pumps	6. Solar PV	7. Marine Energy	8. Renewable Transport
In 2020: 16 -22 TWh/yr	In 2020: 6–18 TWh/yr	In 2020: 1T Wh/yr	In 2020: < 44TWh/yr
Uses electricity to pull heat from air or ground ('reverse refrigerator').	Classic panels on roofs to generate electricity from sunlight. Small to industrial scale	Small contribution to 2020, but potential to provide much more in future	Much theoretical potential but must ensure sustainability.

Sources: Definition from EU, *Directive 2009/28/EC*; TWh figures from DECC(2011 and 2012), *Renewables Roadmap*

Because of the low starting point, deployment needs to be steep

Renewable electricity generation increased from 9.4% in 2011 to 12.5% by the end of 2012.

Sources: DECC(2012), Renewables Roadmap; indicative contribution based on possible sharing of burden as set out in HMG(2009), Renewable Energy Strategy

Financial Support

- The Renewables Obligation is currently the main policy for supporting large scale renewable electricity deployment. The Feed in tariff supports smaller scale projects (up to 5MW).
- RO closes to new generation in 2017
- Contracts for Difference will take over as our main source of support for large scale electricity generation projects
- Between 2014 and 2017, new renewable energy projects will be able to make a oneoff choice between the two mechanisms

Impact on energy prices and bills

Average bill impacts shown, not all households will benefit from all measures. [1] CERT, CERT Extension, CESP and EEC 1&2.

Department of Energy & Climate Change

Delivering investment and jobs

Since 2010 DECC has recorded investments in large scale renewable energy totalling over £29 billion, with the potential to support around 30,000 jobs.

What influences people's views on renewables?

Onshore Wind Community Engagement and Benefits

Call for Evidence: Part A- on how communities can have more of a say over, and receive greater economic and wider social benefits from, hosting onshore wind farms. Part B - examined the latest UK onshore wind costs.

Over 1000 response from members of the public, NGOs developers, Local Authorities etc.

Our response was published in June and announced:

- Maintained level of financial support for onshore wind;
- Fivefold increase in community benefits payments;
- Compulsory pre-application consultation;
- Commitment to clear and reliable evidence on the impacts of onshore wind, through an evidence toolkit;
- Best practice guidance for use by those parties involved in onshore wind developments;
- Register of community benefits on offer.

Any questions?

